martes, 27 de diciembre de 2016

El Triac

TRIAC


     El triac es fundamentalmente un diac con una terminal de compuerta para controlar las condiciones de encendido del dispositivo bilateral en cualquiera de las dos direcciones. En otras palabras, para cualquier dirección la corriente de compuerta puede controlar la acción del dispositivo de una manera muy parecida a la demostrada para un SCR. Sin embargo, las características del triac en el primero y tercer cuadrantes son algo diferentes de las del diac, como se muestra en la figura 17.33c. Observe que la corriente de mantenimiento en cada dirección no aparece en las características del diac.

     El símbolo gráfico del dispositivo y la distribución de las capas semiconductoras se dan en la figura 17.33 junto con fotografías del dispositivo. Para cada una de las posibles direcciones de conducción hay una combinación de capas semiconductoras cuyo estado controlará la señal aplicada a la terminal de compuerta.

 El triac es un dispositivo semiconductor de tres terminales que se usa para controlar el flujo de corriente promedio a una carga, con la particularidad de que conduce en ambos sentidos y puede ser bloqueado por inversión de la tensión o al disminuir la corriente por debajo del valor de mantenimiento. El triac puede ser disparado independientemente de la polarización de puerta, es decir, mediante una corriente de puerta positiva o negativa.


Estructura interna del Triac:



La estructura contiene seis capas como se indica en la FIG. b, aunque funciona siempre como un tiristor de cuatro capas. En sentido MT2-MT1 conduce a través de P1N1P2N2 y en sentido MT1-MT2 a través de P2N1P1N4. La capa N3 facilita el disparo con intensidad de puerta negativa. La complicación de su estructura lo hace mas delicado que un tiristor en cuanto a di/dt y dv/dt y capacidad para soportar sobre intensidades. Se fabrican para intensidades de algunos amperios hasta unos 200 A eficaces y desde 400 a 1000 V de tensión de pico repetitivo. Los triac son fabricados para funcionar a frecuencias bajas, los fabricados para trabajar a frecuencias medias son denominados alternistores. El Triac actúa como dos rectificadores controlados de silicio (SCR) en paralelo Fig. b , este dispositivo es equivalente a dos latchs.


METODOS DE DISPARO



    Como hemos dicho, el Triac posee dos ánodos denominados ( MT1 y MT2) y una compuerta G.
La polaridad de la compuerta G y la polaridad del ánodo 2, se miden con respecto al ánodo 1.
El triac puede ser disparado en cualquiera de los dos cuadrantes I y III mediante la aplicación entre los terminales de compuerta G y MT1 de un impulso positivo o negativo. Esto le da una facilidad de empleo grande y simplifica mucho el circuito de disparo. Veamos cuáles son los fenómenos internos que tienen lugar en los cuatro modos posibles de disparo.

1 – El primer modo del primer cuadrante designado por I (+), es aquel en que la tensión del ánodo MT2 y la tensión de la compuerta son positivas con respecto al ánodo MT1 y este es el modo mas común (Intensidad de compuerta entrante).
La corriente de compuerta circula internamente hasta MT1, en parte por la union P2N2 y en parte a través de la zona P2. Se produce la natural inyección de electrones de N2 a P2, que es favorecida en el área próxima a la compuerta por la caida de tensión que produce en P2 la circulación lateral de corriente de compuerta. Esta caída de tensión se simboliza en la figura por signos + y - .
Parte de los electrones inyectados alcanzan por difusión la unión P2N1 que bloquea el potencial exterior y son acelerados por ella iniciándose la conducción.

2 – El Segundo modo, del tercer cuadrante, y designado por III(-) es aquel en que la tensión del ánodo MT2 y la tensión de la compuerta son negativos con respecto al ánodo MT1 (Intensidad de compuerta saliente). Se dispara por el procedimiento de puerta remota, conduciendo las capas P2N1P1N4. La capa N3 inyecta electrones en P2 que hacen más conductora la unión P2N1. La tensión positiva de T1 polariza el área próxima de la unión P2N1 más positivamente que la próxima a la puerta. Esta polarización inyecta huecos de P2 a N1 que alcanzan en parte la unión N1P1 y la hacen pasar a conducción.

3 – El tercer modo del cuarto cuadrante, y designado por I(-) es aquel en que la tensión del ánodo MT2 es positiva con respecto al ánodo MT1 y la tensión de disparo de la compuerta es negativa con respecto al ánodo MT1( Intensidad de compuerta saliente).
El disparo es similar al de los tiristores de puerta de unión. Inicialmente conduce la estructura auxiliar P1N1P2N3 y luego la principal P1N1P2N2.
El disparo de la primera se produce como en un tiristor normal actuando T1 de puerta y P de cátodo. Toda la estructura auxiliar se pone a la tensión positiva de T2 y polariza fuertemente la unión P2N2 que inyecta electrones hacia el área de potencial positivo. La unión P2N1 de la estructura principal, que soporta la tensión exterior, es invadida por electrones en la vecindad de la estructura auxiliar, entrando en conducción.

4 – El cuarto modo del Segundo cuadrante y designado por III(+) es aquel en que la tensión del ánodo T2 es negativa con respecto al ánodo MT1, y la tensión de disparo de la compuerta es positiva con respecto al ánodo MT1(Intensidad de compuerta entrante).
El disparo tiene lugar por el procedimiento llamado de puerta remota. Entra en conducción la estructura P2N1P1N4.
La inyección de N2 a P2 es igual a la descrita en el modo I(+). Los que alcanzan por difusión la unión P2N1 son absorbido por su potencial de unión, haciéndose más conductora. El potencial positivo de puerta polariza más positivamente el área de unión P2N1 próxima a ella que la próxima a T1, provocándose una inyección de huecos desde P2 a N1 que alcanza en parte la unión N1P1 encargada de bloquear la tensión exterior y se produce la entrada en conducción.
El estado I(+), seguido de III(-) es aquel en que la corriente de compuerta necesaria para el disparo es mínima. En el resto de los estados es necesaria una corriente de disparo mayor. El modo III(+) es el de disparo más difícil y debe evitarse su empleo en lo posible.
En general, la corriente de encendido de la compuerta, dada por el fabricante, asegura el disparo en todos los estados.



FORMAS DE ONDA DE LOS TRIACS

La relación en el circuito entre la fuente de voltaje, el triac y la carga se representa en la FIG siguiente . La corriente promedio entregada a la carga puede variarse alterando la cantidad de tiempo por ciclo que el triac permanece en el estado encendido. Si permanece una parte pequeña del tiempo en el estado encendido, el flujo de corriente promedio a través de muchos ciclos será pequeño, en cambio si permanece durante una parte grande del ciclo de tiempo encendido, la corriente promedio será alta.



 Un triac no esta limitado a 180 de conducción por ciclo. Con un arreglo adecuado del disparador, puede conducir durante el total de los 360 del ciclo. Por tanto proporciona control de corriente de onda completa, en lugar del control de media onda que se logra con un SCR.
Las formas de onda de los triacs son muy parecidas a las formas de onda de los SCR, a excepción de que pueden dispararse durante el semiciclo negativo. En la FIG.8 se muestran las formas de onda tanto para el voltaje de carga como para el voltaje del triac ( a través de los terminales principales) para dos condiciones diferentes.
En la FIG.8 (a), las formas de onda muestran apagado el triac durante los primeros 30 de cada semiciclo, durante estos 30 el triac se comporta como un interruptor abierto, durante este tiempo el voltaje completo de línea se cae a través de las terminales principales del triac, sin aplicar ningún voltaje a la carga. Por tanto no hay flujo de corriente a través del triac y la carga.
La parte del semiciclo durante la cual existe seta situación se llama ángulo de retardo de disparo.
Después de transcurrido los 30 , el triac dispara y se vuelve como un interruptor cerrado y comienza a conducir corriente a la carga, esto lo realiza durante el resto del semiciclo. La parte del semiciclo durante la cual el triac esta encendido se llama ángulo de conducción.
La FIG.8 (b) muestran las mismas formas de ondas pero con ángulo de retardo de disparo mayor.


Control de Fase (Potencia)



Una aplicación fundamental del triac se presenta en la figura 17.34. En esta capacidad, controla la potencia de ca suministrada a la carga encendiéndose y apagándose durante las regiones positiva y negativa de la señal senoidal de entrada. La ventaja de esta configuración es que durante la parte negativa de la señal de entrada se obtendrá el mismo tipo de respuesta ya que tanto el diac como el triac se pueden encender en la dirección inversa. La forma de onda resultante de la corriente a través de la cargaaparece en la figura 17.34. Si modificamos el resistor R, podemos controlar el ángulo de conducción. Existen unidades disponibles capaces de manejar cargas de más de 10 kW.

No hay comentarios:

Publicar un comentario